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delivery suite, where Yj is a gamma random variable with mean µ and vari-
ance σ2. The values of these parameters are θ

.
= 13, µ

.
= 8 hours and σ2 .

= 13
hours squared. The average time and median times spent, Y = N−1

∑
Yj and

M , vary from day to day, with the lower right panel of Figure 2.1 suggesting
that E(M) < E(Y ) and var(M) > var(Y ), properties we shall see theoretically
in Example 2.30.

Much of this book is implicitly or explicitly concerned with distinguishing
random and systematic variation. The notions of sampling variation and of a
random sample are central, and before continuing we describe a useful tool
for comparison of data and a distribution.

2.1.4 Probability plots

It is often useful to be able to check graphically whether data y1, . . . , yn come
from a particular distribution. Suppose that in addition to the data we had
a random sample x1, . . . , xn known to be from F . In order to compare the
shapes of the samples, we could sort them to get y(1) ≤ · · · ≤ y(n) and
x(1) ≤ · · · ≤ x(n), and make a quantile-quantile or Q-Q plot of y(1) against x(1),
y(2) against x(2), and so forth. A straight line would mean that y(j) = a+bx(j),
so that the shape of the samples was identical, while distinct curvature would
indicate systematic differences between them. If the line was close to straight,
we could be fairly confident that y1, . . . , yn looks like a sample from F — after
all, it would have a shape similar to the sample x1, . . . , xn which is from F .

Quantile-quantile plots are helpful for comparison of two samples, but when
comparing a single sample with a theoretical distribution it is preferable to
use F directly in a probability plot, in which the y(j) are graphed against
the plotting positions F−1{j/(n + 1)}. This use of the j/(n + 1) quantile of
F is justified in Section 2.3 as an approximation to E(X(j)), where X(j) is
the random variable of which x(j) is a particular value. For example, the jth
plotting positions for the normal and exponential distributions Φ{(x− µ)/σ}
and 1 − e−λx are µ + σΦ−1{j/(n + 1)} and −λ−1 log{1 − j/(n + 1)}. When
parameters such as µ, σ, and λ are unknown, the plotting positions used are
for standardized distributions, here Φ−1{j/(n+1)} and − log{1− j/(n+1)},
which are sometimes called normal scores and exponential scores. Probability
plots for the normal distribution are particularly common in applications and
are also called normal scores plots. The interpretation of a probability plot is
aided by adding the straight line that corresponds to perfect fit of F .

Example 2.16 (Birth data) The top left panel of Figure 2.3 shows a
probability plot to compare the 95 times in the delivery suite with the normal
distribution. The distribution does not fit the largest and smallest observa-
tions, and the data show some upward curvature relative to the straight line.
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Figure 2.3

Probability plots for
hours in the delivery
suite, for the normal,
exponential, gamma,
and log-normal
distributions
(clockwise from top
left). In each panel
the dotted line is for
a fitted distribution
whose mean and
variance match those
of the data. None of
the fits is perfect,
but the gamma
distribution fits best,
and the exponential
worst.
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Standard normal plotting positions
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Standard exponential plotting positions
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Standard normal plotting positions

Lo
g 

ho
ur

s

-2 -1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

•••••
••••••••

••••••••••••
••••••••
••••••••••••••

•••••••••••••••
••••••••••

•••••••••••
••
••
•••••

• •
•

Gamma plotting positions

H
ou

rs

0 2 4 6 8 10 12

0
5

10
15

20

The top right panel shows that the exponential distribution would fit the data
very poorly. The bottom left panel, a probability plot of the log yj against nor-
mal plotting positions, corresponding to checking the log-normal distribution,
shows slight downward curvature. The bottom right panel, a probability plot
of the yj against plotting positions for the gamma distribution with mean y
and variance s2, shows the best fit overall, though it is not perfect.

In the normal and gamma plots the dotted line corresponds to the theo-
retical distribution whose mean equals y and whose variance equals s2; the
dotted line in the exponential plot is for the exponential distribution whose
mean equals y; and the dotted line in the log-normal plot is for the normal
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distribution whose mean and variance equal the average and variance of the
log yj .

Some experience with interpreting probability plots may be gained from
Practical 2.3.

Exercises 2.1
1 Let m and s be the values of location and scale statistics calculated from

y1, . . . , yn; m and s may be any of the quantities described in Examples 2.1
and 2.2. Show that the effect of the mapping y1, . . . , yn !→ a + by1, . . . , a + byn

b > 0, is to send m, s !→ a + bm, bs. Show also that the measures of shape in
Examples 2.4 and 2.5 are unchanged by this transformation.

2 (a) Show that when δ is added to one of y1, . . . , yn and |δ| → ∞, the average
y changes by an arbitrarily large amount, but the sample median does not. By
considering such perturbations when n is large, deduce that the sample median
has breakdown point 0.5. A sketch may help.

(b) Find the breakdown points of the other statistics in Examples 2.1 and 2.2.

3 (a) If κ > 0 is real and k a positive integer, show that the gamma function

Γ(κ) =

∫ ∞

0

uκ−1e−u du,

has properties Γ(1) = 1, Γ(κ + 1) = κΓ(κ) and Γ(k) = (k − 1)!. It is useful to
know that Γ( 1

2 ) = π1/2, but you need not prove this.
(b) Use (a) to verify the mean and variance of (2.7).
(c) Show that for 0 < κ ≤ 1 the maximum value of (2.7) is at y = 0, and find
its mode when κ > 1. The mode of a

density f is a value y
such that
f(y) ≥ f(x) for all x.

4 Give formulae analogous to (2.4) for the variance, skewness and ‘shape’ of a
distribution F . Do they behave sensibly when a variable Y with distribution F
is transformed to a + bY , so F (y) is replaced by F{(y − a)/b}?

5 Let Y have continuous distribution function F . For any η, show that X = |Y −η|
has distribution G(x) = F (η + x) − F (η − x), x > 0. Hence give a definition of
the median absolute deviation of F in terms of F−1 and G−1. If the density of
Y is symmetric about the origin, show that G(x) = 2F (x) − 1. Hence find the
median absolute deviation of the Laplace density (2.5).

6 A probability plot in which y1, . . . , yn and x1, . . . , xn are two random samples
is called a quantile-quantile or Q-Q plot. Construct this plot for the first two
columns in Table 2.1. Are the samples the same shape?

7 The stem-and-leaf display for the data 2.1, 2.3, 4.5, 3.3, 3.7, 1.2 is

1 | 2
2 | 13
3 | 37
4 | 5

If you turn the page on its side this gives a histogram showing the data values
themselves (perhaps rounded); the units corresponding to intervals [1, 2), [2, 3)
and so forth are to the left of the vertical bars, and the digits are to the right.


